
TELOS Talks –
Scheduling & eBPF 101

Zonghao Zhang

2025.6.27



Question-Oriented

This talk is question-oriented.
• What

• Why

• How

• (When, Where, …)

To be free about the questions, as most of 
them are self Q&A.



Contents

1. (CPU) Scheduling

2. sched_ext & eBPF

3. Network Scheduling



Scheduling - Tasks & Resources

What is the “scheduling”?
• TL;DR: Mapping work to resources (; and vice versa).

Data

CPU

Channel

…



Scheduling - Exclusive & Shared

Why we need scheduling?
• Too many mouths to feed​.

• Exclusively use shared resource.



Scheduling - Policy & Mechanism

How to make and perform scheduling decisions?

Policy

- How to select the next running task?

- When to make a new decision?

Mechanism

- How to manage pending tasks?

- Where to make decisions?

- How to perform the decision?



Scheduling - Here & There

Where is the scheduling required?
• CPU, Network, I/O Request, Memory, Storage, etc.

(This talk primarily focus on CPU and Network)



CPU Scheduling

A typical workflow of CPU scheduling.

Job Queue Ready Queue CPU

I/O Waiting 

Queue
I/O

Exit

Scheduling Events
Pick Next

Queue Tasks



Linux Task/Thread Scheduler

Policies
• Default (CFS/EEVDF)

• Real-Time (FIFO, Round-Robin)

• Deadline

• Other (Batch, Idle)

Task Priority
• Static priority (sched_prio)

- Range from 0 to 99, used in real-time policies

• Dynamic priority (nice)

- Enabled when sched_prio is zero

- Range from -20 to 19

- Lower is more favorable to the scheduler



CFS/EEVDF

Virtual run time (vruntime)
• Tasks’ real execution time weighted by tasks’ niceness.



Queue Tasks

CFS/EEVDF

Virtual run time (vruntime)
• Tasks’ real execution time weighted by tasks’ niceness.

Job Queue Ready Queue CPU

I/O Waiting 

Queue
I/O

Exit

Scheduling Events
Pick Next



CFS/EEVDF

Virtual run time (vruntime)
• Tasks’ real execution time weighted by tasks’ niceness.

Job Queue Ready Queue CPU

I/O Waiting 

Queue
I/O

Exit

Schedule Tick,

Explicitly kick the scheduler
Minimum 

vruntime/vdeadlinevruntime



CFS/EEVDF - Limitations

Coarse-Grained Schedule Tick vs. Strict SLOs
• Typically, the schedule tick is milliseconds.

• However, some latency-critical tasks require sub-milliseconds end-to-
end response time.

Generality vs. Customization
• It is difficult to characterize tasks with a single value indicator.

• It is exhausting to develop, debug, and deploy a customized kernel 
scheduler.



Optimization

Coarse-Grained Schedule Tick vs. Strict SLOs
• Use dedicated cores to send fine-grained IPIs instead of coarse-

grained timer interrupts. [Shinjuku]

• Use user-level libraries to support cooperative threading.

Generality vs. Customization
• Customize the scheduler policy to meet the workload properties.

• Wrap the scheduler as a kernel module. [Plugsched]

• Separate the policy and mechanism. [Enoki, sched_ext]

• Delegate the scheduling decision making to userspace. [ghOSt]



eBPF-Extensible Scheduler Class

What is the sched_ext (SCX)?
• SCX is a Linux kernel feature which enables implementing and 

dynamically loading safe kernel thread schedulers in BPF.

Why we need SCX?
• Small changes in scheduling behavior can have a significant impact on 

various components of a system.

• Use-cases have become increasingly complex and diverse.

• Experimenting with CFS directly or implementing a new sched_class
from scratch is often difficult and time consuming.



eBPF

What is eBPF used for?
• Run user programs in a privileged context (e.g., kernel).

• Safely and efficiently extends the capabilities of the kernel at runtime.

• No need to change the kernel source code or load kernel modules.



eBPF Programs

Where can eBPF programs run in the kernel?
• Where a program can attach and what it is allowed to do depends on 

its program type.

Program Types
• Network

• cGroup

• Tracing

• Misc (e.g., struct ops, syscall)

ELF Section Names
• Libbpf uses ELF section names to convey the program type.



A Minimum eBPF Program



eBPF Verifier

How to ensure the kernel safety?
• The eBPF verifier checks the program against a set of rules.

What does the verifier do?
• Walk over each instruction and update the state of the registers and 

stack.

• Check every possible permutation of a program.

• Keep track of data types.

• Null checks before dereferencing pointers.



eBPF Maps

What are eBPF maps?
• Efficient key/value stores that reside in kernel space

• Communicate between a user space application and in-kernel eBPF
code

• Share data amang multiple eBPF programs



Take All Together

How to use eBPF?
• Import helper libraries.

• Select points we are interested in to attach eBPF programs.

• Define proper eBPF maps for communication.

• Write eBPF programs and user programs.

• Fighting the eBPF verifier.



eBPF For Scheduling

How does SCX accelerate scheduler development?
• Simplify the scheduling model and expose friendly APIs.

• Dynamically load the scheduler without reboots.

• Provide a fallback mechanism to avoid system crashes



Simplified Scheduler Model

Job Queue Ready Queue CPU

I/O Waiting 

Queue
I/O

Exit

Scheduling Events
Pick Next

Queue Tasks



Simplified Scheduler Model



Simplified Scheduler Model

Dispatch Queue



Simplified Scheduler Model

Dispatch Queue



SCX Practice - BPF Maps



SCX Practice - BPF Programs



SCX Practice



Network I/O Scheduling

Why is network scheduling special?
• Large-scale, datacenter applications pose unique challenges to system 

software and their network stack in two aspects:

Microsecond Tail Latency
- Each user request often involves hundreds of servers, and the end-to-end response 

time highly associates with the slowest server. 

- The system network stack plays a significant role in exacerbating the problem.

High Package Rates
- Most service request packages are quite small (hundreds of bytes). 

- Each node can scale to serve millions of requests per second.



The Hardware-OS Mismatch

• Multiple applications share a single processing core.

• Packet interarrival times much higher than the latency of interrupts and 
system calls.

Job Queue Ready Queue CPU

Scheduling Events
Pick Next

Queue Tasks



Optimization

• Separate dataplane and control plane

• Zero copy

• Run-to-completion

• Synchronization-free, flow-consistent mapping of requests to 
cores

• Multi-queue NIC, RSS



The Best Policy Is No Policy

• FCFS

• Do not share cores.

Dispatch Request Flows

Allocate Cores 

To Applications



FCFS - Challenges

Difficult to balance workloads.
• High-variance dispersed workload distribution

• Head-of-line blocking

• Work conserving

Difficult to pre-/re-allocate resources.
• Bounded/unbounded workloads

• ​​Clairvoyant/non-clairvoyant scheduling



Balance Workloads

High-variance dispersed workload distribution
• Leave some cores for burst [Perséphone]

Head-of-line blocking
• Processor Sharing
• Preemption [Shinjuku]

Work conserving
• Work steeling [ZygOS]
• Dynamically allocate resource [Shenago]



Pre-/Re-allocate Resources

• Learn request flow characteristics by ML

• Approximize lower boundary/upper boundary [QCLIMB]

• Coordinate with centralized dispatcher [Junction]



Summary

• Brief intro to scheduling

• CPU/thread scheduling

• eBPF

• Develop a scheduler with sched_ext

• Network scheduling concepts



Thanks for listening


	幻灯片 1: TELOS Talks – Scheduling & eBPF 101
	幻灯片 2: Question-Oriented
	幻灯片 3: Contents
	幻灯片 4: Scheduling - Tasks & Resources
	幻灯片 5: Scheduling - Exclusive & Shared
	幻灯片 6: Scheduling - Policy & Mechanism
	幻灯片 7: Scheduling - Here & There
	幻灯片 8: CPU Scheduling
	幻灯片 9: Linux Task/Thread Scheduler
	幻灯片 10: CFS/EEVDF
	幻灯片 11: CFS/EEVDF
	幻灯片 12: CFS/EEVDF
	幻灯片 13: CFS/EEVDF - Limitations
	幻灯片 14: Optimization
	幻灯片 15: eBPF-Extensible Scheduler Class
	幻灯片 16: eBPF
	幻灯片 17: eBPF Programs
	幻灯片 18: A Minimum eBPF Program
	幻灯片 19: eBPF Verifier
	幻灯片 20: eBPF Maps
	幻灯片 21: Take All Together
	幻灯片 22: eBPF For Scheduling
	幻灯片 23: Simplified Scheduler Model
	幻灯片 24: Simplified Scheduler Model
	幻灯片 25: Simplified Scheduler Model
	幻灯片 26: Simplified Scheduler Model
	幻灯片 27: SCX Practice - BPF Maps
	幻灯片 28: SCX Practice - BPF Programs
	幻灯片 29: SCX Practice
	幻灯片 30: Network I/O Scheduling
	幻灯片 31: The Hardware-OS Mismatch
	幻灯片 32: Optimization
	幻灯片 33: The Best Policy Is No Policy
	幻灯片 34: FCFS - Challenges
	幻灯片 35: Balance Workloads
	幻灯片 36: Pre-/Re-allocate Resources
	幻灯片 37: Summary
	幻灯片 38: Thanks for listening

